Energy per capita

It doesn´t come as a surprise that bigger countries consume larger amounts of energy than smaller ones. In general, at least. And yet, there are exceptions to this rule. US consumption of primary energy was 2204.1 Mtoe in 2009 according to BP´s Statistical Review of World Energy 2011. In the same year Canada used some 312.5 Mtoe.  The two neighbours are roughly equivalent in terms of economic performance (with GDP per capita in the US being larger than the respective quantitiy for Canada). Thus the main reason for explaining the difference is by reference to the population numbers. Here the US with 307 millions outweighs Canada with 33 millions. However, there are also other factors coming into play, as we shall see later.

A nice example that population is not the only parameter steering energy needs is given by comparing Germany and Mexico. Although Mexico has considerably more inhabitants (107 millions vs. 82) its consumption figures are significantly lower than the German ones (167 Mtoe vs. 307 Mtoe).

A sensible quantity for measuring the energy hunger of a particular economy is the primary energy consumption per capita. In that way, size effects stemming from largely different populations are normalised. The philosophy behind this is similar to the one of energy intensity which measures consumption per unit of GDP.

In the following we consider a number of developed economies and look at their energy hunger per head. We will find out that there are considerable differences between those countries although, at first sight, they may appear to be very similar in nature. The raw data for the following investigations have been taken from BP´s Statistical Review of World Energy, from the UN Statistics Division and from the CIA World Factbook.

Fig. 1 Primary energy consumption per capita in ktoe, 1991-2010

Although each of these countries is part of the wealthier economies of our planet, their energy consumption per head reveals some striking differences. We may observe that during the past 20 years the figures have not changed dramatically. Norway´s figures, though, show some variation, however, without any clear trend to higher or lower values.

One of the intentions of our choice was to highlight consumption characteristics between northern and southern countries. And indeed, the southern branch consisting of Italy, Portugal and Spain is well separated from their northern counterparts Canada, Norway, Finland and Sweden. In fact, there is even a significant gap between Sweden and Finland on the one hand and Canada and Norway on the other.

Having the north-south distinction as a particular feature we may come forward with some explanations on the seemingly unbridgable gap between the northern and southern economies. Obviously, one of the strongest arguments is based on climatic variations. Average temperatures are lower in nordic countries than in the southern ones which explains part of the difference. In order to have a reliable measure on how energy consumption is triggered by climatic circumstances we apply the concept of heating-degree days (HDD) which is used by Eurostat. Apparently, there are two parameters governing the HDD: the temperature and the number of days when heating is necessary. Without going into details we may state that the  nordic countries (except Canada) had more than 5000 HDD in 2009, whereas the Mediterranean countries managed with well under 2000 HDD.

Although the HDD concept is able to explain much of the difference, it is still not reflecting reality in total. The other factor coming into play here is the economic performance of each country expressed in GDP per head. Here, too, we see a gap between the two blocs. In order to visualise differences we take the average of both, the GDP and the energy consumption per capita, and scrutinize the deviations of both of the blocs from the mean value. The result is given in Fig. 2.

Fig. 2 Deviation of GDP and energy consumption per head from average in %. Data from 2009.

Fig. 2 gives us an indication that the energy intensity (which is pegged to the GDP) is closely linked to the consumption per capita, thus reflecting the economic performance of a country and its inhabitants. Those countries with a higher GDP per head tend to have also a higher primary energy consumption per inhabitant than the countries with a below average GDP per capita.

Although the term “energy per capita” has some intrinsic limitations, it represents nevertheless a sensible quantity if we are to understand consumption patterns and their causes. It is particularly sensitive to take into account factors like the degree of economic development and the temperature zone of a given country. Otherwise our conclusions might be distorted, especially when comparing countries with different economic background and/or geographic distribution. It goes without saying that Canada will consume more energy per inhabitant than, say, Portugal, simply because of its relative positioning on the globe. However, geography does not account for everything. We have to make allowances for differences in industrial and economic power as well. And again Canada, having a considerably higher GDP per head, is better off  than Portugal. Putting everything together will allow us to draw the right conclusions from the rough picture the concept of “energy per capita” provides us with.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s