French oil consumption

Plans of the French government to raise taxes on gasoline and diesel have sparked much controversy recently.

Data from the European Commission suggest that consumption of oil products has fallen significantly in the recent past as can be seen from the pictures below.

FR oil consumption 2002-2016

In total, the situation looks as follows. Since the beginning of the financial crisis in 2008, overall consumption of oil products has gone gown.

FR oil consumption all products 2002-2016

Electricity from Fossil Fuels in Germany

The use of fossil fuels for generating electricity has gone down in Germany over the past few years as can be seen in the picture below. The underlying data have been taken from Eurostat.


Fig. 1: Fossil fuel consumption for electricity generation in Germany

As the amount of regenerative energy is increasing, the use of coal and lignite is going down. However, coal still plays an important role as a backup capacity whenever wind and solar energy fail to cover Germany´s energy needs.


Capacity factors for combustible fuels in UK and Germany

Capacity factors for electricity generation with combustible fuels have changed significantly in the past two-and-a-half decades, data from Eurostat suggest.

This is clearly linked to the strong increase of regenerative power sources which leads to longer periods when conventional power generation is running in stand-by mode.

Capacity factor fossile fuels UK-DE-1991-2015-v2

German Electricity from Renewables vs. Consumption in 2016

The raw data for this analysis have been taken from Paul-Frederik Bachs website which provides most valuable insight into renewable energy production in various European countries.

The following picture shows hourly production rates in MWh from wind and PV (lower curve) as well as hourly consumption figures (load, upper curve) . In addition, the 200-h moving average is shown, depicting the regular consumption patterns and the irregular production pattern of wind and PV.

DE load wind pv in 2016

Only rarely do the peaks of renewable production get near the lower ends of daily consumption.


German Wind Energy Production in 2016

The picture below shows the hourly production figures of wind energy in Germany in 2016. The underlying data are taken from Paul-Frederik Bach´s ample collection of data on green energy production in various European countries.

The mean hourly production during that period was 8765 MWh with a standard deviation of 6865 MWh. The minimum and maximum values were 135 and 33626 MWh, respectively.

French Economy Minister Emmanuel Macron launches GE 9HA gas turbine

Andrew J. Lammas VP of Engineering Power Generation in front of 9HA Turbine test rig

Andrew J. Lammas VP of Engineering Power Generation in front of 9HA Turbine test rig

Nicholas Newman 29 May 2015

It is designed to power a city the size of Birmingham with 400,000 households from its output of 397 MW for the turbine on its own or a whopping 570 MW in the combined cycle. Not surprisingly, the GE 9HA gas turbine is the size of a house; its technological component parts certainly impress the onlooker.Belfort – 28 May 2015-French economy minister Emmanuel Macron came to the launch of GE’S latest gas turbine, the GE 9HA gas turbine at its Belfort complex in South-Eastern France near the Swiss border. He said about the 9HA launch, “It is a great day for French industrial expertise and innovation.” This device is not only the latest but also the biggest new gas turbine of its kind in the world.

About GE’s  9HA Gas Turbine


Throughout the 9HA, there are hundreds of sensors, which enable real-time performance analytics and optimize its use conditions accordingly. GE claims that such features mean unmatched efficiency, easier maintenance, and lower operating costs.

In addition, Victor Abate, CEO, Power Generation Products at GE Power & Water says. “Our 9HA advanced technology helps to drive leading performance, lower emissions, and improved project economics.” He claims that the 9HA is nimble for such a large beast, able to achieve full output in a mere 28 minutes, compared to a similar sized coal turbine, taking up to one hour to reach full output. For a machine this size, this is a record. This means that it is not only ideal for base load generation, but also responding to rapid market changes because of the fluctuations in demand caused by renewable generation.


Victor Abate President GE Power Generation Products, said, “GE 9HA gas turbine took a team of 1800 employees three years of intensive development and €100 million to create on the assembly line and test bench capable of building and testing these giant turbines.” Though each turbine weighs as much as an Airbus A380 super-jumbo jet, it is constructed with a micron-level precision by specialized technicians and engineers with precision tools.

The market for GE’s  9HA Gas Turbine

“Already, there are nine confirmed global orders for the GE 9HA gas turbine, three from the US, 4 from Europe and Russia and 2 from Japan,” said Francois Cavin General Manager GE Products Finance. In addition, there is interest from Turkey for three turbine plants.

A second device is due to be delivered to THK-16 OAO gas power plant in Kazan, Tearstan  in Russia, as part of plans to improve power system reliablity,

The first production model 9HA leaves for northern France in a special convoy, leaving the Belfort plant on June 25th. It will be one of the largest road transport operations in European history. For the journey, the turbine will be mounted on a 100-meter long platform and travel first by road, then down the Escault River towards the North of France. It will take approximately two weeks of high-precision transportation to move this giant turbine from Belfort’s factory to EDF’s Bouchain power plant, near Lillie and the Belgium border.


The plant is located where Europe’s cross-border interconnectors serve not only the French, but also the Belgium and English markets, making it an ideal location to supply peak power in all those markets. The new-generation GE model will be installed at an existing plant at Bouchain by 2015 when an existing coal-fired thermal power plant is phased out. The plant will cost 400 million euros ($536 million), EDF Chief Executive Officer Henri Proglio has said. The project is part of a “strategic partnership” with GE and aimed at modernizing EDF’s thermal plants by 2023.

For more about the GE 9HA Gas Turbine

Are Europe’s gas power generators turning into zombie companies?

“Gas power is losing money hand over fist”

By:Nicholas Newman 12 March 2013

It appears that Europe’s gas generators are in danger of turning into zombie companies, [i]suggests Hugh Sharman Owner, Incoteco (Denmark) ApS. [ii] They finding it increasingly difficult coping with the market created by uncontrolled expansion of “free” but heavily subsidised renewables and the dumping of cheap imported coal from the United States. Unfavourable market conditions and negative gas power generation are forcing companies to lose money hand over fist, suggests Guido Custer Managing Director at Delta Energy.

Gas plants in crisis

This is particularly the case in both Holland and Germany which is full of zombie gas power plants. It is not surprising we are hearing about gas power plants like Dong Energy idling its brand new Rotterdam plant for most of the time. It is cheaper for Dong Energy to buy imported German wind and coal generated electricity at €45 per megawatt hour than produce it themselves at €50 per megawatt hour. Throughout Europe, we are seeing plans to moth ball gas plants by major utilities such as E.on, Statkraft, GDF Suez SA and Centrica Plc. Whilst, Gabrielle Seeling-Hochmuth, head of gas strategy at Vattenfall’s gas competence centre, suggested, “that the company is unlikely to invest in new gas capacity until the 2030s”. [iii]

An oversupply of conventional power

Currently, in both in Germany and the Netherlands, both countries are facing a dire oversupply of conventional power capacity. [iv] In Holland, this is due in part to a gas power plant building boom by investors keen to take advantage of the countries natural gas resources. Their ambition was to turn the Netherlands into a major exporter of power to the rest of Europe. As a result, the country is facing an oversupply of conventional generation capacity made worse by the country’s encouragement of biomass, wind and solar power.

At the same time in Germany, the policy of giving renewables the highest priority in supplying the market when it comes to despatching power, and the very success of the €4 billion a year subsidies to promote renewables, has drastically shrunk the market for gas power stations. On sunny and windy days, onshore wind and photovoltaic meet over 85 per cent of Germany’s mid-day electricity needs reports Renewable Energy World. This is despite Germany closing nearly a third of its nuclear power plants reactors in spring 2011, it exports electricity to its neighbours – and indeed sold more abroad in 2012 (23 gigawatts) than ever before. [v]So industry analysts are suggesting Germany is dumping its power on its neighbours.

Cheap coal in Europe has dramatically increased the output from coal generation dramatically. As a result, this is drastically reducing the demand for gas generation in many states. This has resulted in numerous gas plants operating in the red in France, the Netherlands, Spain and the Czech Republic, according to data compiled by Bloomberg. In Britain, gas generation is barely breaking even. It is not surprising operators are making a dash away from gas; after all, they are not charities.

The creation of zombie power companies?

“In fact, most of Europe’s major generators are turning into zombie companies, saddled with huge debts and heritage assets that are fast turning into liabilities,” suggests Hugh Sharman. Unfortunately, this dash away from gas is causing a problem for Europe’s energy leaders concerned about such issues as competition, stability and security of power supplies. Since if there is not adequate conventional reserve backup capacity to deal with lack of wind or sunshine for several days, then Europe faces the threat of continent wide blackouts.

Need for reform?

It has been suggested by various energy leaders, including Guido Custer that something must be done to end this cycle of zombie failure for gas generation and ensure that there is an adequate supply of reserve conventional capacity available. Guido Custer has proposed at Flame a series of measures to ensure adequate investment in maintaining current capacity and encourage new investment when it required. Certainly his proposals for a minimum price for the emissions trading system and widening the scope of members of European emission trading system sound reasonable.

A solution?

However, it is expected that many European governments will look not look kindly at lobbying efforts by the power sector for further subsidies known as capacity mechanism, given the current recession. [vi] Instead it would be more politically practicable for policy makers if government’s reduced subsidies for renewables and fixed the European emissions trading system so that gas is on a more equal footing with coal, renewables and nuclear. Unless something is done, the prospect of zombified European power companies could be a serious prospect. Even so, it looks like the size of Europe’s gas generation portfolio will be in future years, considerably reduced.

[i] Zombie Company is a media term for a company that needs constant bailouts in order to operate, or an indebted company that is able to repay the interest on its debts but not reduce its debts. There are several types of zombie companies. The term regained popularity in the media during 2008 for companies receiving bailouts from the U.S. Troubled Asset Relief Program (TARP). A 2002 New York Times article about Japanese companies kept on “life-support” with loans include a headline that stated, “They’re Alive! They’re Alive! Not!; Japan Hesitates to Put an End to Its ‘Zombie’ Businesses

Multi-functionality and multiple use: important features for sustainable cities

I want to write again on a topic that highly interests me. I wrote a blog ‘A sustainable city needs to be smart’ in May 2012. The topic I want to discuss this time builds on this subject.

I did some studies about making urban areas more sustainable during my work as a researcher at Wageningen University (The Netherlands). Together with a colleague with a background in spatial planning, I performed a study on the diversity of urban areas. We wrote a paper on the subject. We discussed the importance of a multi-functional urban area. It is important to see the chances the different urban functions have to offer in reaching a sustainable future.

In that way, having an industrial area in the vicinity of a residential area could be advantageous. Think about the concept of ‘Industrial Ecology’, with the case of Kalundborg in Denmark as example. Industrial Ecology can be seen as an example of park management: the companies within the borders of an industrial area try to find ways to re-use materials, to create new products from residual resources and to limit waste. A way of dealing with empty space in industrial areas and allowing other companies to build an industrial facility in that area, could be to use the local characteristics and available resources as restrictions. In that way, only a company that can be part of the chain is allowed to start its activities in the industrial area.

Park management is a good start, but it is not enough to make a complete urban area more sustainable. Therefore, we used the term ‘urban management’ (Leduc & Van Kann, 2013), in which we propose to broaden the scope and to look for options outside the borders of the industrial area. Often these industrial areas are close enough connected to residential areas or office space were, e.g., waste heat can be very useful, or residual resources from industry can be used to build houses, roads. Empty space in industrial areas can be used to collect water or to produce energy. It is very important to find synergy, so collecting water and energy can go together.

In order to create a sustainable urban area, we need to know how the area looks like. So, it is very important to perform a thorough check of the area first. Use this check to find out which functions are available in the area, at which locations, at what distances, what type of energy, materials and water is used and how much. Try to answer which type of energy, materials and water is needed at which quantity, at which location and when. An answer to these four questions can help to find better, more efficient ways to use energy and other resources, and to re-use resources.

The idea is to transform the urban area from a linear, resource-to-waste, metabolism to a more circular metabolism. In such a system resources can be used multiple times, more efficiently and effectively, and waste is not seen as waste, but as a residual resource. Any resource – energy, water, material – can be seen as a resource with still some remaining quality after use. When producing energy, lots of heat is produced that is mostly thrown away. This waste heat can also be seen as a residual resource that can be used by other urban functions for industrial processes or heating purposes. A similar idea can be found for water and materials: certain tasks in the household or industry need clean water, which after use will be ‘grey’ water and is usually eliminated via the sewer. If that ‘grey’ water is seen as a residual resource and not eliminated immediately, it can be used for other purposes like toilet flushing or gardening. An example for materials could be wood: it can be used immediately to be burned and produce energy, but it could be used more effectively. The wood could first be used to build a house, after the lifetime some of the beams could probably still be used to make furniture and in the last phase the wood could be used to produce energy. By following this chain, the same piece of wood would still produce the same amount of energy, but its qualities are used more effectively.

The ideas are based on research performed by the author and described in a published paper:

Wouter R.W.A. Leduc and Ferry M.G. Van Kann. Spatial planning based on urban energy harvesting toward productive urban regions. Journal of Cleaner Production, 2013, 39, pp. 180-190.

Available by author on request.

Wouter Leduc

By wouterleduc Posted in General

Fuel Poverty in the UK

This time I would like to cover a very different aspect of energy and its usage in everyday life. So far there is  no apparent lack of energy, technically speaking. Energy is available in abundance, and the only restriction to using it is the price we are asked to pay for it. Thus big users will eventually find themselves paying a huge bill. But it´s not only big consumers who might face a hefty burden from their energy bill. More and more people are using a substantial amount of their available income in order to  buy the energy they need. In particular, this is true for heating which is also one of the biggest parts of private energy consumption.

The UK statistical office is collecting data on fuel poverty. The term refers essentially to energy needs for heating purposes and the relative amount of household income people have to spend in order to “maintain a satisfactory heating regime”, i.e. 21 °C in the main living area and 18 °C for other rooms. In particular, people are considered to suffer from fuel poverty if they have to spend more than 10% of the household income on fuel for heating.

The figure below gives a sketch of the situation in the recent past (2003 and 2009).

Number of fuel poor households in millions. Abbreviations: dc – dependent children, hh – household.

The first observation we make is that the number of fuel poor households has apparently dramatically increased between 2003 and 2009. During that period the number of households concerned has, on average, more than doubled. Thus, fuel poverty in the above sense is definitely increasing and showing a severe social impact. Energy is becoming a scarce and to some extent even luxurious commodity.

Another observation is that specific groups are particularly hit by this phenomenon. People without dependent children are more likely to suffer from fuel poverty than those having kids. Moreover, persons older than 60 years are also facing a greater risk of getting fuel poor. The same is true for single persons when compared to couples.

The causes for this are manifold. Energy prices are on the rise. They climb faster than the average income, especially for retired people. Another factor is certainly the economic crisis which hit a number of European countries in 2008. So far we are still far from a sustainable recovery. Therefore, we may well assume that the situation has aggravated in the meantime.

Yet another factor coming into play is related to economic circumstances: Many elderly people may not be able to afford refurbishing their houses such that they consume less energy, especially for heating. Renovating old houses is a costly undertaking which may simply go beyond many people´s financial capabilities.

Fuel poverty is a critical issue not only in the UK. Also other countries like Germany encounter the same problem. However, most of those countries do not collect the respective statistical data as is the case in the UK. Therefore, it is extremely difficult to assess the severity of fuel poverty for other countries. Taking into account that energy is of critical importance to the functioning of our societies, it would be highly desirable to collect those data in order to tackle the problem as soon as possible.

Do Energy Saving Light Bulbs Really Save Energy?

Some considerations about the usefulness of energy saving light bulbs.

Conventional light bulbs which are now banned in the EU since 1st September 2012 are very inefficient when it comes to turning electrical energy into visible light. More than 90 % of the energy input are emitted in the form of heat. Thus with a less than 10 % efficiency in terms of light production the classical light bulb may indeed look a rather hopeless case and energy saving lamps appear to be the preferable choice.

However, a closer inspection shows that the odds are not at all so bad for the conventional lighting medium. During the cold season, i.e. whenever people feel the need of switching on their heating, the classical light bulb contributes to the heating effort. Thus whenever we count heading degree days the old fashioned light bulb lowers the need to switch on the heating. From a physical point of view during the heating period the energy saving light bulb does not save energy. That is a simple deduction from the law of energy conservation. On the contrary, if we turn to energy saving lamps, the work load of our heating systems gets higher.

On the other hand, it is true that during the warmer period energy saving light bulbs are the better choice because then we really do not need any extra heating. So in order to understand the energy balance of both lighting systems we developed a model which is based on the following assumptions:

Get-up time: 6:00

Leaving home in the morning: 8:00

Returning home in the evening: 17:00

Sleepy time:  24:00

In addition to that we assume an average performance of 200 W(el). Our model is then applied to two European cities, one in the northern (Stockholm) and the other in the southern part (Rome). From this model it follows that the maximum number of lighting hours per day is 9 which is reached during the dark winter months. On the other hand, during the long daylight hours in summer, it may be necessary to switch on the light for no more than 2 hours per day. Electricity consumption for light sources is thus fluctuating between those two extremes. Fig. 1 shows the distribution of lighting hours in both cities.

Fig. 1 Lighting hours in Rome and Stockholm.

How much artificial light we actually need is largely determined by the length of the daylight period which in turn is governed by sunrise and sunset.  The data for those astronomical observables are easily accessible, clearly highlighting the differences between northern and southern locations. Although these differences may be very large during certain periods of the year, their overall impact on our model is far less dramatic than expected. On an annual basis the number of lighting hours in Stockholm is not very much different from the one in Rome, 2160 vs. 2110, respectively, i.e. less than 3 percent difference. These lighting hours correspond to an average electricity consumption of 432 kWh and 423 kWh, respectively.

Lighting and heating

What is, however, different is the number of heating degree days between the two cities. Correspondingly, the number of lighting hours during the heating period is much larger in northern Europe than in the southern part. Our analysis shows that more than 80 % of lighting hours are consumed during the heating period in the case of Stockholm. This, in turn, means that during that period there is no gain from using energy saving light bulbs. The respective number for Rome is 62 %. Thus also in southern Europe a substantial amount of lighting is used when people are likely to put on their heating. The rest of Europe lies, in its vast majority, somewhere between these two extreme values. There are exceptions, but these are statistically insignificant.

From a physical point of view, energy saving lamps are only useful when it is warm outside, because then there is no need for excessive heat. During winter those lamps do not lead to an overall reduction of energy consumption. Let us look at the situation from the point of view of a classical light bulb. It wastes energy in summer, but not in winter. According to our model, the waste energy produced by a classical lighting system amounts to about 78 kWh (Stockholm) and 145 kWh (Rome), respectively, over the whole year. We may also ask how much heating energy we can save by using normal light bulbs. The figures are 311 kWh (S) and 235 kWh (R), respectively. Thus we may conclude that, physically speaking, the energy balance of classical light bulbs is clearly better than the one of their energy saving competitors. Their contribution to heating in winter outweighs their waste of energy in summer. Of course, the effect is much more pronounced in northern Europe than in the southern countries. But even in the latter ones, the result is undoubtedly in favour of normal light bulbs. Figs. 2 and 3 demonstrate the contribution to heating and the waste energy of conventional light bulbs for the two cities.

Fig. 2 Heating potential vs waste energy of conventional light bulbs in Stockholm.

Fig. 3 Heating potential vs. waste energy of conventional light bulbs in Rome.

It is, of course, conceivable that under certain circumstances energy saving light bulbs live up to their expectations. Our model indicates that this may be the case in tropical areas where heating is hardly ever needed.

In any case, energy-saving lighting systems are not reducing energy consumption at the level of private consumption which we have considered inour model. This is even less so at a more general level, when taking into account the energy effort for producing and disposing of light bulbs. The recycling of energy saving systems is putting an extra burden on their overall energy balance, therby seriously questioning their high expectations.